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Moore’s law: how to use so many transistors?
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"Transistor Count and Moore's Law - 2011" by Wgsimon - http://en.wikipedia.org/wiki/Moore's_law

Single thread performance is limited
• Clock frequency constraints

• “Near” parallelism harder to expose
• Instruction level parallelism (ILP)

Hint: exploit “distant” parallelism
• Data level parallelism (DLP)

• Task level parallelism (TLP)

Programmers responsibility to 
expose DLP/TLP parallelism

http://en.wikipedia.org/wiki/Moore's_law


The multi- and many-core era: Intel® solutions for HPC

Multi-core Many integrated core (MIC)

C/C++/Fortran, OMP/MPI/Cilk+/TBB C/C++/Fortran, OMP/MPI/Cilk+/TBB

Bootable, native execution model PCIe, native and offload execution models

Up to 18 cores, 3 GHz, 36 threads Up to 61 cores, 1.2 GHz, 244 threads

Up to 768 GB, 68 GB/s, 432 GFLOP/s DP Up to 16 GB, 352 GB/s, 1.2 TFLOP/s DP

256-bit SIMD, FMA, gather (AVX2) 512-bit SIMD, FMA, gather/scatter, EMU (IMCI)

Targeted at general purpose applications
Single thread performance (ILP)

Memory capacity

Targeted at highly parallel applications
High parallelism (DLP, TLP)
High memory bandwidth
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How to enable parallelism with standard methods
Intel® Parallel Studio XE 2015 tool suite

Single programming model for all your code
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Compiler, libraries, 
parallel programming 

models

Source code
+

annotations
(OMP, MPI, 
compiler 

directives)



Characterizing Polyhedron 
benchmark suite
Windows 8

Intel® CoreTM i7-4500U (0,1)(2,3)

Intel® Fortran Compiler 15.0.1.14 [/O3 /fp:fast=2 /align:array64byte /Qipo /QxHost]
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http://www.polyhedron.com/fortran-compiler-comparisons/polyhedron-benchmark-suite


Auto-vectorization effectiveness
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Auto-parallelization effectiveness
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Memory bandwidth requirements
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Observations: implicit vs. explicit parallelism

Compiler toolchain is limited in exposing implicit parallelism
• Good for ILP (uArch supposed to help)

• Not so bad for DLP
• Exploited by use of “vectors” (SIMD)

• But potentially missing opportunities due to aliasing, etc.

• Disappointing for TLP
• Hyper-threading rarely useful on HPC applications

Explicit parallelism relies on the programmer
• DLP: compiler directives, array notation, vector classes, intrincsics

• TLP: Multi- and many-cores available (OpenMP, Cilk+, TBB)

Distributed systems with standard methods
• Clusters, MPI models
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Exposing DLP/TLP parallelism
Simplest method by using compiler directives (aka “pragmas”)

Exposing DLP: vectorization/SIMD pragmas
#pragma vector {args} Vectorization hints

#pragma ivdep Ignore vector assumed dependencies

#pragma simd [clauses] Enforces vectorization with hints

Exposing TLP: OMP pragmas
#omp parallel for Parallelizes iterations of a given loop

#omp atomic/critical Thread synchronization

Runtime performance tuning for threaded applications
OMP_NUM_THREADS Number of threads to run

OMP_SCHEDULE How work is distributed among threads

KMP_AFFINITY How threads are bound to physical PUs

KMP_PLACE_THREADS Easy thread placement (Intel® Xeon PhiTM only)
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Polyhedron/gas_dyn2 
Linux RHEL 6.6

Intel® Xeon® E5-4650L, 2 socket x 8 cores x 2 HTs

Intel® Xeon PhiTM 7120A, 61 cores x 4 threads

Intel® Fortran Compiler 15.0.1.14 [-O3 -fp-model fast=2 -align array64byte -ipo -xHost/-mmic]
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Serial version

Continuity equations solver to models the flow of a gas in 1D

Two main hotspots: EOS (66%) and CHOZDT(33%)
• Implicit loops by using Fortran 90 array notation

• Both hotspots perfectly fused + vectorized
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OMP workshare construct

Workshare currently not working (not parallelized)

Reduction loop in CHOZDT does not even vectorize
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OMP parallel loop (CHOZDT)

Intel® compiler does not 
support OMP 4.0 user 
defined reductions

We have to write the 
parallel reduction by 
ourselves!
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OMP parallel loop (EOS)

Straightforward transformation

Streaming stores to avoid wasting some read bandwidth
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Performance results
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Intel® Xeon PhiTM speedup vs. Intel® Xeon®: 5.8x (serial), 4.4x (parallel)  
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Polyhedron/linpk 
Linux RHEL 6.6

Intel® Xeon® E5-4650L, 2 socket x 8 cores x 2 HTs

Intel® Xeon PhiTM 7120A, 61 cores x 4 threads

Intel Fortran Compiler 15.0.1.14 [-O3 -fp-model fast=2 -align array64byte -ipo -xHost/-mmic]
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Linpk hotspot: DGEFA
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Matrix decomposition with partial pivoting by Gaussian elimination

Invokes BLAS routines DAXPY (98%), IDAMAX, DSCAL (all are inlined)



OMP parallel loop

Inner “i” loop properly 
autovectorized by the compiler

Middle “j” loop can be 
parallelized

Outer “k” loop (diagonal) has 
dependencies between 
iterations

Application is memory bound
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Performance results
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Intel® Xeon PhiTM speedup vs. Intel® Xeon®: 3x (serial), 3.6x (parallel)  
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Summary and conclusions

Programmers are responsible of exposing DLP/TLP parallelism to fully 
exploit the available hardware in HPC domains

Today’s Intel® HPC solutions allow to easily expose DLP/TLP parallelism
• Intel® Parallel Studio XE 2015 tool suite

• Simple methods (compiler pragmas, OMP, libraries)

• Same source code for multi- and many-core processors

Intel® Xeon PhiTM coprocessors targeted at highly parallel applications
• Significant speedups achieved in bandwidth bound applications

• Runtime tuning is key to achieve best performance

Future work
• Experiment with other benchmarks (not only from Polyhedron)

• Non memory bound applications, native/offload execution models

• Extend parallelization to distributed systems with MPI
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