Getting Scientific Software Installed
HPC Knowledge Meeting '14 @ Barcelona, Spain
Jan 14th 2014

Jens.timmerman@ugent.be
easybuild@lists.ugent.be
HPC-UGent @ Ghent University, Belgium

- central contact for High Performance Computing at university
- established in 2008, part of central IT department (DICT)
- member of Flemish Supercomputer Centre (VSC)
 - collaboration between Flemish university associations
our computing infrastructure:

- seven Tier 2 systems (capacity computing)
- one Tier 1 system

 #119 in Top500 (June’12), currently at #306

HPC-UGent team currently consists of 8 FTEs

- system administration of HPC infrastructure

 - top-down for Tier2 systems: hardware, configuration, user support
 - Tier1: owned by UGent, setup together with HP, user support

- user support and training

 - EasyBuild grew out of need from this

- convincing groups to switch to central infrastructure
Building scientific software is... fun!

Scientists focus on the functionality of their software, not on portability, build system, ...

Common issues with build procedures of scientific software:
- incomplete, e.g. no install step
- requiring human interaction
- heavily customised and non-standard
- uses hard-coded settings
- poor and/or outdated documentation

Very time-consuming for user support teams!
building from **source** is preferred in an HPC environment

performance is critical, instruction selection is key (e.g. AVX)

existing build tools are

- hard to **maintain** (e.g., bash scripts)
- stand-alone, **no reuse** of previous efforts
- **OS-dependent** (HomeBrew, *Ports, ...)
- **custom** to (groups of) software packages
 e.g., Dorsal (DOLFIN), gmkpack (ALADIN)
Current tools are lacking

- not a lot of packaged scientific software available (RPMs, ...)
 - requires **huge effort**, which is duplicated across distros

- Hard to install multiple versions of a program
 - version
 - Compiler (intel / gcc / clang)
 - Mpi stack (openmpi, intel mpi, mpich)
 - Math kernel (Atlas, Openblas, Gotoblas, IMKL)
Our build tool wish list

- **flexible** framework
- allows for **reproducible** builds
- supports **co-existence** of versions/builds
- enables **sharing** of build procedure implementations
- **fully automates** builds
- **dependency** resolution
Building software with ease

![easybuild](https://via.placeholder.com/150)

a software build and installation framework

- written in **Python**
- developed in-house for 2.5 years before public release
- **open-source (GPLv2)** since April 2012
- EasyBuild v1.0: **stable API** (November 2012)
- **monthly releases** (latest: v1.10, Dec 24th 2013)
- continuously enhanced and extended
- http://hpcugent.github.io/easybuild
‘Quick’ demo for the impatient

eb HPL-2.0-goolf-1.4.10.eb -r

- downloads all required sources (best effort)
- builds goolf toolchain (be patient), and builds HPL with it
 goolf: GCC, OpenMPI, OpenBlas, ScaLAPACK, FFTW
- Generates a module file
- default: source/build/install dir in $HOME/.local/easybuild
Step-wise install procedure

build and install procedure as implemented by EasyBuild

I: read easyconfig
II: fetch sources
III: check readiness
IV: unpack sources
V: apply patches
VI: prepare
VII: configure build
VIII: build
IX: test
X: install
XI: extensions
XII: sanity check
XIII: cleanup
XIV: env. module
XV: test cases

most of these steps can be customized if required
easybuild

Features

- **logging** and archiving
 - entire build process is logged thoroughly, logs stored in install dir
 - easyconfig file used for build is archived (file/svn/git repo)

- **automatic dependency resolution**
 - build stack of software with a single command, using `--robot`

- **running interactive installers autonomously**
 - by passing a Q&A Python dictionary to the `run_cmd_qa` function

- **building software in parallel**
 - e.g., on a (PBS) cluster, by using `--job`

- **comprehensive testing**: unit tests, regression testing
Supported Packages

- 443 packages build out of the box

- Over 3000 example (tested!) easyconfigs

- Including
 - ALADIN, CP2K, DOLFIN, OpenFOAM, NEURON, WPS, WRF
 - QuantumESPRESSO, MWChem
a2ps ABAQUS ABINIT ABySS ACML ALADIN Allinea ALLPATHS-LG AMOS AnalyzeFMRI ant ARB aria2 Armadillo arpack-ng ASE ATLAS Autoconf Automake bam2fastq BamTools Bash bbcp bbFTP bbftpPRO beagle-lib BEDTools BFAST binutils biodeps BioPerl Biopython BiSearch Bison BLACS BLAST BLAT BOINC Bonnie++ Boost Bowtie Bowtie2 BWA byacc bzip2 cairo CAP3 CBLAS ccache CCfits CD-HIT CDO CFITSIO cflow CGAL cgdb cgmPIC cgmPOLO cgmvapich2 cgmvolf cgOMPI cgoolf Chapel CHARMM Clang ClangGCC CLHEP ClustalW2 CMake Corkscrew CP2K CPLEX CRF++ Cube CUDA Cufflinks cURL cutadapt CVXOPT Cython DB Diffutils DL_POLY_Classic Docutils DOLFIN Doxygen EasyBuild ECore ed Eigen ELinks EMBOSS EPD ErlangOTP ESMF ESPResSo expat FASTA fastahack FASTX-Toolkit FCM FDTD_Solutions Ferret FFC FFTW FIAT findutils fixedproto flex FLTK FLUENT fmri FoldX fontconfig FRC_align freeglut FreeSurfer freetype FSL g2clib g2lib GATE GATK gawk GCC gccCUDA GDAL GDB Geant4 GenomeAnalysisTK GEOS gettext GHC Ghostscript GIMP git GLib GLIMMER GLPK gpipro gmacml GMP gmpich2 gmvpich2 gmvolf gmupol gnuplot gnutils goafm gompi gompic google-sparsehash golff golffc GPAW gperf Greenlet grib_api GROMACS GSL GTL guile gzip h5py h5utils Harminv HDF HDF5 HH-suite HMMER horton HPCBIOS_Bioinfo HPCBIOS_Debuggers HPCBIOS_LifeSciences HPCBIOS_Math HPCBIOS_Profiler HPL HTSeq hwloc Hypre icc iccf iort iqmpm iimak imkl impi Infernal inputproto Inspector Instant iomkl Iperf iff IPython iqacl itac Jansson JaspEr Java Jinja2 JUnit kbproto LAPACK lftp likwid LWM2 lxml lynx LZO M4 make makedepend Maple MariaDB Mathematica MATLAB matplotlib mC MCL MDP Meep MEME Mercurial Mesa Mesquite MetaVelvet METIS Molden molmod Mothur motif MPFR mpi4py mpiBLAST MPICH MPICH2 MrBayes MTL4 MUMmer MUMPS MUSCLE MUST MVAPIC92 nano NASM NCBI-Toolkit ncdf4 NCL nCurses netCDF netCDF-C++ netCDF-Fortran netloc nettle NEURON ns numactl numexpr numpy NWChem O2scl Oases Oger OPARI2 OpenBabel OpenBLAS OpenFOAM OpenIFS OpenMPI OpenPGM OpenSSL ORCA orthomcl otcl OTF OTF2 packmol PAML pandas PANDAseq PAPI parallel Paraview ParFlow ParMETIS ParMGridGen Pasha paycheck PCC PCRE PDT Perl PETSc petsc4py phonopy picard pixman pkg-config PLINK PnMPI PP Primer3 printproto problog PSI PyQuante pyslive.pyTables Python python-meep PyYAML PyZMQ QLogicMPI Qt qtop QuantumESPRESSO R RAXML RCS RNAz ROOT Rosetta Sablotron SAMtools ScaLAPACK ScasusScientificPython scikit-learn scipy SCons SCOOP Score-P SCOTCH SDCC setup tools Shapely SHRIMP Silo SLEPc SOAPdenovo Sphinx SQLite Stacks Stow Stride SuiteSparse SURF SWIG symy Szip TAMkin Tar tbb TCC Tcl tclcl tcsfj Theano TiCCutils TIMBL TinySVM Tk TopHat Tornado TotalView Trilinos Trinity UDUNITS UFC UFL util-linux ValGrind Velvet ViennaRNA Viper VTK VTune WiEN2k wiki2beamer WPS WRF xbitmaps xcb-proto XCrySDen xextproto XML XML-LibXML XML-Simple xorg-macros xproto xtrans yaff YamCha YAML-Syck Yasm ZeroMQ zlib zsh zsync
EasyBuild: high-level design
Terminology

framework

Python packages and modules forming *the core of EasyBuild*

provides (loads of) supporting functionality

very modular and dynamic design w.r.t. easyblocks, toolchains, ...

easyblock

a Python module providing *implementation of a build procedure*

can be generic or software-specific

easyconfig file (.eb)

build specification:

software name/version, toolchain, build options, ...

simple text files, Python syntax
High-level design: easyblocks

- build procedure implementations
- modular design, dynamically extensible
 - add your easyblock in the Python search path
 - EasyBuild will pick it up
- object-oriented scheme
 - subclass from existing easyblocks or abstract class *EasyBlock*
High-level design: easyblocks

- build procedure implementations

- `easyblocks.generic`: generic easyblocks
 - custom support for groups of applications
 - e.g., ConfigureMake, CMakeMake, ...

- `easyblocks`: application-specific easyblocks
tools package

- supporting functionality, e.g.:
 - `run_cmd` for shell commands
 - `run_cmd_qa` for interactive commands
 - `extract_file` for unpacking
 - `apply_patch` for patching

- `tools.toolchain` package for compiler toolchains
- `tools.module_naming_scheme` for module naming schemes
toolchains package

- support for **compiler toolchains**
- relies on **tools.toolchain**
- toolchains are defined in here
- organized in subpackages:
 - `toolchains.compiler`
 - `toolchains.mpi`
 - `toolchains.linalg` (BLAS, LAPACK, ...)
 - `toolchains.fft`

- very modular design for allowing extensibility
- plug in a Python module for compiler/library to extend it
module_naming_scheme package

- support for custom module naming schemes
- Flat vs tree
 - e.g.: always prefix compiler/toolchain
- define your module naming scheme
 - EasyBuild picks up any scheme following the specifications
- see “Using a custom module naming scheme” wiki page
- our naming scheme: EasyBuildModuleNamingScheme
- available since EasyBuild v1.8.0, with limited capabilities
 - only name, version, versionsuffix and toolchain available
test package

- unit testing of EasyBuild

```python
python -m test.framework.suite
```

mainly for EasyBuild developers

- New features must have tests
- New bugfixes must have a failing and working test
Comprehensive testing

- **unit tests** are run automagically by Jenkins
- **regression test** results are pulled in on request
- publicly accessible: https://jenkins1.ugent.be/view/EasyBuild
Known problems

- Beter tests
- Validate installations
- Benchmarks
- Require domain specific knowledge
- -rpath vs $LD_LIBRARY_PATH
- Sources being removed from the web
- Others?
EasyBuild dependencies

- **Linux / OS X**
 - used daily on Scientific Linux 5.x/6.x (Red Hat-based)
 - also tested on Fedora, Debian, Ubuntu, CentOS, SLES, ...
 - some known issues on OS X, focus is on Linux
 - no Windows support (and none planned for now)
- **Python v2.4** or more recent version (2.x, no Python 3 support yet)
- **environment modules** (or Lmod)
- system C/C++ compiler to bootstrap a GCC toolchain
Installing EasyBuild :(

EasyBuild suffers from the mess that is Python packaging...

$ easy_install --user easybuild

error: option --user not recognized (only for recent versions of easy_install / setuptools)

“You should be using pip!”

$ pip install --user easybuild

pip: No such file or directory (pip not installed)

“Just use --prefix with easy_install!”

$ easy_install --prefix=$HOME easybuild

$ export PATH=$HOME/bin:$PATH

$ eb --version

ERROR: Failed to locate EasyBuild's main script
($PYTHONPATH is not set correctly)
Bootstrapping EasyBuild

The easiest way to install EasyBuild is by bootstrapping it.

https://github.com/hpcugent/easybuild/wiki/Bootstrapping-EasyBuild

$ wget http://hpcugent.github.com/easybuild/bootstrap_eb.py

$ python bootstrap_eb.py $HOME

This will install EasyBuild using EasyBuild, and produce a module:

$ export MODULEPATH=$HOME/modules/all:$MODULEPATH

$ module load EasyBuild

$ eb --version

This is EasyBuild 1.8.2 (framework: 1.8.2, easyblocks: 1.8.2)

We’re also looking into a packaged release (RPM, .deb, ...).
Configuring EasyBuild

By default, EasyBuild will install software to

$HOME/.local/easybuild/software

and produce modules files in

$HOME/.local/easybuild/modules/all

You can instruct EasyBuild otherwise by configuring it, using:

- a **configuration file**, e.g., $HOME/.easybuild/config.cfg
- **environment variables**, e.g., $EASYBUILD_INSTALLPATH
- **command line**, e.g., --installpath

https://github.com/hpcugent/easybuild/wiki/Configuration
(note: documentation needs work)
easybuild

building software with ease

Do you want to know more?

website: http://hpcugent.github.com/easybuild

GitHub: https://github.com/hpcugent/easybuild[-framework|-easyblocks|-easyconfigs]

PyPi: http://pypi.python.org/pypi/easybuild[-framework|-easyblocks|-easyconfigs]

mailing list: easybuild@lists.ugent.be

Twitter: @easy_build

IRC: #easybuild on freenode.net
building software with ease

Introduction to EasyBuild
EasyBuild hackathon @ Nicosia, Cyprus
Oct 22th 2013

kenneth.hoste@ugent.be
easybuild@lists.ugent.be