DATE & TIME

18/06/2020

09:45 - 10:30

SPEAKER

Xavier Besseron

Research Scientist in HPC
University of Luxembourg

DESCRIPTION

Multi-physics problems containing discrete particles interacting with fluid phases are widely used industry for example in biomass combustion on a moving grate, particle sedimentation, iron production within a blast furnace, and selective laser melting for additive manufacturing.

The eXtended Discrete Element Method (XDEM) uses a coupled Eulerian-Lagrangian approach to simulate these complex phenomena, and relies on the Discrete Element Method (DEM) to model the particle phase and Computational Fluid Dynamics (CFD) for the fluid phases, solved respectively with XDEM and OpenFOAM. However, such simulations are very computationally intensive. Additionally, because the DEM particles move within the CFD phases, a 3D volume coupling is required, hence it represents an important amount of data to be exchanged. This volume of communication can have a considerable impact on the performance of the parallel execution.

To address this issue, XDEM has proposed a coupling strategy relying on a co-located partitioning. This approach coordinates the domain decomposition of the two independent solvers, XDEM and OpenFOAM, to impose some co-location constraints and reduce the overhead due to the coupling data exchange. This strategy for the parallel coupling of CFD-DEM has been evaluated to perform large scale simulations of debris within a dam break flow.

Sponsors

Adamantium

Platinum

Location

  • Parc Tecnològic
  • Marie Curie, 8 08042 Barcelona
  • +34 931640488
  • hpckp@hpcnow.com

Contact us

We Would Love to Hear From You

I accept the terms and conditions